翻訳と辞書
Words near each other
・ Hybrid Scheduling
・ Hybrid Scorecard
・ Hybrid search engine
・ Hybrid security
・ Hybrid seed
・ Hybrid server
・ Hybrid silicon laser
・ Hybrid solar cell
・ Hybrid solar lighting
・ Hybrid speciation
・ Hybrid sport
・ Hybrid striped bass
・ Hybrid sulfur cycle
・ Hybrid swarm
・ Hybrid switchgear modules
Hybrid Synergy Drive
・ Hybrid system
・ Hybrid Tango
・ Hybrid Tango II
・ Hybrid tax credit
・ Hybrid taxi
・ Hybrid tea
・ Hybrid tea rose
・ Hybrid Television Services
・ Hybrid ternary code
・ Hybrid testing
・ Hybrid Theory
・ Hybrid Theory (EP)
・ Hybrid Theory Conferences
・ Hybrid theory for photon transport in tissue


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hybrid Synergy Drive : ウィキペディア英語版
Hybrid Synergy Drive

Hybrid Synergy Drive (HSD) is the brand name of Toyota for hybrid car drive train technology. It is used in its Yaris, Auris, Prius, Highlander Hybrid, Camry Hybrid, Estima, Alphard, Lexus RX 400h/RX 450h, Lexus ES 300h, Lexus GS 450h, Lexus LS 600h/LS 600hL, Lexus CT 200h, Lexus IS 300h, Lexus HS 250h and Lexus NX 300h automobiles. Toyota also licenses its HSD technology to Nissan for use in its Nissan Altima Hybrid. Its parts supplier Aisin Seiki Co. offers similar hybrid transmissions to other car companies.
HSD technology produces a full hybrid vehicle which allows the car to run on the electric motor only, as opposed to most other brand hybrids which cannot and are considered mild hybrids. The HSD also combines an electric drive and a planetary gearset which performs similarly to a continuously variable transmission. The Synergy Drive is a drive-by-wire system with no direct mechanical connection between the engine and the engine controls: both the gas pedal/accelerator and the gearshift lever in an HSD car merely send electrical signals to a control computer.
HSD is a refinement of the original Toyota Hybrid System (THS) used in the 1997 to 2003 Toyota Prius. The second generation system THS II first appeared on the redesigned Prius in 2004. The name was changed in anticipation of its use in vehicles outside the Toyota brand (Lexus; the HSD-derived systems used in Lexus vehicles have been termed Lexus Hybrid Drive, although the Lexus implementation is really a variation of the THS III), the THS III was implemented in the 2006 Camry, and would eventually be implemented in the 2010 "third generation" Prius, and the 2012 Prius c. The THS III is designed for increased power and efficiency, and also improved "scalability" (adaptability to larger as well as smaller vehicles), wherein the ICE/MG1 and the MG2 have separate reduction paths, and are combined in a "compound" gear which is connected to the final reduction gear train and differential; it was introduced on all-wheel drive and rear-wheel drive Lexus models.〔(【引用サイトリンク】title=Lexus GS450h – Road Tests )〕 By May 2007 Toyota had sold one million hybrids worldwide; two million by the end of August 2009; and passed the 5 million mark in March 2013. , more than 7 million Lexus and Toyota hybrids had been sold worldwide. The United States accounted for 38% of TMC global hybrid sales .〔
== Principle ==

Toyota's HSD system replaces a normal geared transmission with an electromechanical system. An internal combustion engine (ICE) delivers power most efficiently over a small speed range, but the wheels need to be driven over the vehicle's full speed range. In a conventional automobile the geared transmission delivers different discrete engine speed-torque power requirements to the wheels. Geared transmissions may be manual, with a clutch, or automatic, with a torque converter, but both allow the engine and the wheels to rotate at different speeds. The driver can adjust the speed and torque delivered by the engine with the accelerator and the transmission mechanically transmits nearly all of the available power to the wheels which rotate at a different rate than the engine, by a factor equal to the gear ratio for the currently selected gear. However, there are a limited number of "gears" or gear ratios that the driver can chose from, typically four to six. This limited gear-ratio set forces the engine crankshaft to rotate at speeds where the ICE is less efficient, i.e., where a liter of fuel produces fewer joules. Optimal engine speed-torque requirements for different vehicle driving and acceleration conditions can be gauged by limiting either tachometer RPM rate or engine noise in comparison with actual speed. When an engine is required to operate efficiently across a broad RPM range, due to its coupling to a geared transmission, manufacturers are limited in their options for improving engine efficiency, reliability, or lifespan, as well as reducing the size or weight of the engine. This is why the engine for an engine-generator is often much smaller, more efficient, more reliable, and longer life than one designed for an automobile or other variable speed application.
However, a continuously variable transmission allows the driver (or the automobile computer) to effectively select the optimal gear ratio required for any desired speed or power. The transmission is not limited to a fixed set of gears. This lack of constraint frees the engine to operate at its optimal (most efficient) speed (RPM). The most efficient speed (RPM) for an ICE is often around 1500–2000 RPM for the typical power required to propel an automobile. An HSD vehicle will typically run the engine at its optimal efficiency speed whenever power is needed to charge batteries or accelerate the car, shutting down the engine entirely when less power is required.
Like a CVT, an HSD transmission continuously adjusts the effective gear ratio between the engine and the wheels to maintain the engine speed while the wheels increase their rotational speed during acceleration. This is why Toyota describes HSD-equipped vehicles as having an e-CVT (electronic continuously variable transmission) when required to classify the transmission type for standards specification lists or regulatory purposes.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hybrid Synergy Drive」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.